Email : triyn102@ugm.ac.id |
Education Background : |
Doctor, Dr., Kimia, Innsbruck University, Austria, 1992 Master, S.U, Kimia, Universitas Gadjah Mada, 1989 Undergraduate, Drs., Kimia, Universitas Gadjah Mada, 1985 |
Research Interest : |
Katalisis, Sumber Energi, Kimia Fisikacluster – Science and technology Aktif meneliti tentang katalis dan kinetika reaksi untuk berbagai tujuan. |
Research Cluster/Group : |
Katalis |
List of Publications : |
(1) Trisunaryanti, W.; Nugrahagusti, I. H.; Purbonegoro, J. Effect of Nickel Precursor Salt Variation in Ni/Mesoporous Carbon Catalyst Synthesis from Teak Sawdust Waste for Microwave-Assisted Hydrocracking of Castor Oil into Biofuel. Waste and Biomass Valorization 2025. https://doi.org/10.1007/s12649-025-02956-3. (2) Ardini, M. A.; Hara, T.; Ichikuni, N.; Trisunaryanti, W. Study of Metal Sequenced Spray Impregnation Method towards Co-Mo/γ-Al2O3 Catalytic Performance in Hydrotreating of Used Coconut Oil to Liquid Biohydrocarbon. Microporous Mesoporous Mater. 2025, 382. https://doi.org/10.1016/j.micromeso.2024.113357. (3) Trisunaryanti, W.; Wijaya, K.; Kartini, I.; Purwono, S.; Mara, A.; Dewi, I. A. Hydrodeoxygenation of Refined Palm Kernel Oil Into Bioavtur Using Spray-Dry Impregnated Activated Carbon Supported-Mo Catalysts. Evergreen 2024, 11 (2), 652–664. (4) Yulianto, A.; Trisunaryanti, W.; Triyono, T.; Saviola, A. J.; Wijaya, K.; Kartini, I.; Purwono, S.; Rodiansono, R.; Mara, A. Effect of Arrangements in an Atmospheric Hydrotreating Reactor of Cobalt and/or Molybdenum Dispersed on Activated Carbon Catalysts toward Bio-Jet Fuel Production from Refined Palm Oil. Case Stud. Chem. Environ. Eng. 2024, 10. https://doi.org/10.1016/j.cscee.2024.100894. (5) Saputra, D. A.; Amin, A. K.; Wijaya, K.; Triyono, T.; Trisunaryanti, W.; Fitroturokhmah, A.; Oh, W.-C. MgO/γ-Alumina and CaO/γ-Alumina Catalysts for the Transesterification of Castor Oil (Ricinus Communis) into Biodiesel. Iran. J. Chem. Chem. Eng. 2024, 43 (4), 1622–1634. https://doi.org/10.30492/ijcce.2023.2004770.6081. (6) Sjafrie, N. D. M.; Rahmadi, P.; Triyono, T.; Kurniawan, F.; Supriyadi, I. H.; Zulpikar, F.; Adrianto, L.; Rahmawati, S.; Hernawan, U. E. Monetary Value of Ecosystem Services in Unhealthy Seagrass Meadows in Indonesia. Ecosyst. Serv. 2024, 70. https://doi.org/10.1016/j.ecoser.2024.101668. (7) Trisunaryanti, W.; Triyono, T.; Falah, I. I.; Wicaksono, D. B.; Sumbogo, S. D. Characteristic and Performance of Ni, Pt, and Pd Monometal and Ni-Pd Bimetal onto KOH Activated Carbon for Hydrotreatment of Castor Oil. Indones. J. Chem. 2024, 24 (1), 115–124. https://doi.org/10.22146/ijc.84640. (8) Trisunaryanti, W.; Aksanti, S. I.; Purbonegoro, J. High Performance of a Base Catalyst from Moringa Leaves Ash for Biodiesel Conversion of Low-Grade Bali Malapari Oil. React. Kinet. Mech. Catal. 2024, 137 (4), 2037–2063. https://doi.org/10.1007/s11144-024-02637-7. (9) Fatmawati, D. A.; Trisunaryanti, W.; Santoso, I.; Triyono, T.; Chasanah, U.; Rois, M. F.; Purbonegoro, J. In-Situ Generation of Enhanced Pd-Co Nanoparticles Using Various Stabilizing Agents Decorated on Reduced Graphene Oxide as Electrocatalyst for Oxygen Reduction Reaction. Nano-Structures and Nano-Objects 2024, 38. https://doi.org/10.1016/j.nanoso.2024.101154. (10) Trisunaryanti, W.; Purbonegoro, J.; Aksanti, S. I. Effect of Cobalt Impregnation Methods on Parangtritis Sand towards Catalysts Activity in Hydrocracking of Degummed Low-Quality Ujung Kulon Malapari Oil into Biohydrocarbons. React. Kinet. Mech. Catal. 2024, 137 (1), 303–321. https://doi.org/10.1007/s11144-023-02538-1. (11) Trisunaryanti, W.; Falah, I. I.; Widyawati, D.; Yusniyanti, F. The Effect of Oxalic Acid and NaOH Treatments on the Character of Wonosari Natural Zeolite as Ni, Cu, and Zn Metal Support Catalyst for Hydrocracking of Castor Oil. Biomass Convers. Biorefinery 2024, 14 (4), 5637–5649. https://doi.org/10.1007/s13399-022-02779-5. (12) Fitria, A.; Trisunaryanti, W.; Santoso, I. Synthesis, Characterization and Performance of Ni/Mesoporous Silica – NH2/Mesoporous Silica and Ni-NH2/Mesoporous Silica as Bifunctional Catalyst in One Step Conversion of Waste Palm Oil to Biodiesel. Commun. Sci. Technol. 2024, 9 (2), 430–441. https://doi.org/10.21924/cst.9.2.2024.1483. (13) Adila, Z.; Trisunaryanti, W.; Triyono, T. Modification of Natural Zeolite from Klaten, Indonesia Using Ammonium Chloride by Ion-Exchange and Its Application as Catalyst in Ethanol Dehydration to Produce Diethyl Ether. Indones. J. Chem. 2024, 24 (2), 505–518. https://doi.org/10.22146/ijc.90279. (14) Chasanah, U.; Trisunaryanti, W.; Santoso, I.; Fatmawati, D. A.; Purbonegoro, J. Effect of Stabilizer Agent Type on the Characteristics of Pd–Ni Nanoparticles Deposited on Reduced Graphene Oxide as Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Sci. 2024, 59 (44), 20593–20605. https://doi.org/10.1007/s10853-024-10407-y. (15) Visiamah, F.; Trisunaryanti, W. Microwave-Assisted Coconut Wood Carbon-Based Catalyst Impregnated by Ni and/or Pt for Bio-Jet Fuel Range Hydrocarbons Production from Calophyllum Inophyllum L. Oil Using Modified-Microwave Reactor. Case Stud. Chem. Environ. Eng. 2024, 9. https://doi.org/10.1016/j.cscee.2024.100722. (16) Trisunaryanti, W.; Triyono, T.; Resa, R. M.; Larasati, S. Performance of Pd and Pt Noble Metal Impregnated on Lapindo Mud-Based Mesoporous Silica on Hydrotreatment of Waste Cooking Oil into Biogasoline. Mater. Today Sustain. 2024, 28. https://doi.org/10.1016/j.mtsust.2024.100978. (17) Wiratini, N. M.; Trisunaryanti, W.; Triyono; Kuncaka, A. Electrochemical Removal of Remazol Black 5 (RB-5) Using SiO2/NiO/Ni Nanocomposite Electrocatalyst Deposited on the Surface of Graphite Electrodes. Evergreen 2023, 10 (3), 1274–1285. https://doi.org/10.5109/7151673. (18) Utubira, Y.; Wijaya, K.; Kunarti, E. S. Microwave Assisted Palm Oil Biodiesel Production Using KOH/ZrO2-Bentonite as Catalyst. In AIP Conference Proceedings; D., M., N., H., H., K., C.N., L., I.W., S., Eds.; American Institute of Physics Inc.: Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Pattimura University, Ambon, 97234, Indonesia, 2023; Vol. 2642. https://doi.org/10.1063/5.0110630. (19) Trisunaryanti, W.; Wijaya, K.; Kartini, I.; Purwono, S.; Mara, A.; Budiansyah, A. Preparation of Mo-Impregnated Mordenite Catalysts for the Conversion of Refined Kernel Palm Oil into Bioavtur. Commun. Sci. Technol. 2023, 8 (2), 226–234. https://doi.org/10.21924/cst.8.2.2023.1288. (20) Ramdhani, D. A.; Trisunaryanti, W. Study of Green and Sustainable Heterogeneous Catalyst Produced from Javanese Moringa Oleifera Leaf Ash for the Transesterification of Calophyllum Inophyllum Seed Oil. Commun. Sci. Technol. 2023, 8 (2), 124–133. https://doi.org/10.21924/cst.8.2.2023.1202. (21) Triyono, T.; Trisunaryanti, W.; Falah, I. I.; Rahmi, L. Effect of Acetic Acid and/or Sodium Hydroxide Treatment towards Characters of Wonosari Natural Zeolite for Hydrotreatment of Castor Oil into Biofuel. Indones. J. Chem. 2023, 23 (2), 298–308. https://doi.org/10.22146/ijc.73746. (22) Trisunaryanti, W.; Wijaya, K.; Triyono, T.; Wahyuningtyas, N.; Utami, S. P.; Larasati, S. Characteristics of Coconut Shell-Based Activated Carbon as Ni and Pt Catalyst Supports for Hydrotreating Calophyllum Inophyllum Oil into Hydrocarbon-Based Biofuel. J. Environ. Chem. Eng. 2022, 10 (5). https://doi.org/10.1016/j.jece.2022.108209. (23) Hernawan; Purwono, B.; Triyono; Hanafi, M. Amino-Functionalized Porous Chitosan as a Solid Base Catalyst for Solvent-Free Synthesis of Chalcones. J. Taiwan Inst. Chem. Eng. 2022, 134. https://doi.org/10.1016/j.jtice.2022.104354. (24) Trisunaryanti, W.; Kartika, I. A.; Mukti, R. R.; Hartati, H.; Triyono, T.; Widyawati, R.; Suarsih, E. Preparation of Ni- and Mo-Based Catalysts Supported on γ-Al2O3 for Hydrocracking of Calophyllum Inophyllum Oil. Biofuels 2022, 13 (2), 231–236. https://doi.org/10.1080/17597269.2019.1669871. (25) Trisunaryanti, W.; Triyono, T.; Fallah, I. I.; Salsiah, S.; Alisha, G. D. Highly Selective Bio-Hydrocarbon Production Using Sidoarjo Mud Based-Catalysts in the Hydrocracking of Waste Palm Cooking Oil. Bull. Chem. React. Eng. Catal. 2022, 17 (4), 712–724. https://doi.org/10.9767/bcrec.17.4.15472.712-724. (26) Nuryanto, R.; Widodo, D. S.; Suseno, A.; Trisunaryanti, W. THE EFFECT OF CALCINATION TEMPERATURE ON SILICA-ALUMINA CHARACTER FROM LAPINDO MUD EXTRACT BY TEMPLATE CATFISH BONES GELATIN. Rasayan J. Chem. 2022, 15 (2), 1137–1144. https://doi.org/10.31788/RJC.2022.1526781. (27) Chasanah, U.; Trisunaryanti, W.; Oktaviano, H. S.; Triyono, T.; Fatmawati, D. A. Role of Temperature and Exposure Time for Controlled and Accelerated Synthesis of Graphene Oxide Using Tour Method. Indones. J. Chem. 2022, 22 (5), 1205–1217. https://doi.org/10.22146/ijc.71817. (28) Trisunaryanti, W.; Novianti, S. A.; Fatmawati, D. A.; Triyono, T.; Ulfa, M.; Prasetyoko, D. Simple and Green Preparation of ZnO Blended with Highly Magnetic Silica Sand from Parangtritis Beach as Catalyst for Oxidative Desulfurization of Dibenzothiophene. Indones. J. Chem. 2022, 22 (2), 455–467. https://doi.org/10.22146/ijc.69938. (29) Trisunaryanti, W.; Santoso, N. R.; Fatmawati, D. A. COMPARATIVE STUDY OF Co/MESOPOROUS SILICA AND Co-NH2/MESOPOROUS SILICA CATALYSTS ACTIVITY IN WASTE COCONUT OIL HYDROCRACKING. Rasayan J. Chem. 2022, 15 (1), 579–585. https://doi.org/10.31788/RJC.2022.1516280. (30) Chasanah, U.; Trisunaryanti, W.; Oktaviano, H. S.; Santoso, I.; Fatmawati, D. A. Study of Green Reductant Effects of Highly Reduced Graphene Oxide Production and Their Characteristics. Commun. Sci. Technol. 2022, 7 (2), 103–111. https://doi.org/10.21924/cst.7.2.2022.906. (31) Trisunaryanti, W.; Triyono, T.; Nandini, E. S.; Suarsih, E. Biomass Valorization to Chemicals over Cobalt Nanoparticles on SBA-15. Bull. Chem. React. Eng. Catal. 2022, 17 (3), 533–541. https://doi.org/10.9767/bcrec.17.3.15160.533-541. (32) Fatmawati, D. A.; Triyono, T.; Trisunaryanti, W.; Chasanah, U. Microwave-Assisted Chemical Co-Reduction of Pd Nanoparticles Anchored on Reduced Graphene Oxide with Different Loading Amounts. Indones. J. Chem. 2022, 22 (5), 1282–1292. https://doi.org/10.22146/ijc.73206. (33) Trisunaryanti, W.; Azizah, S. N.; Fatmawati, D. A.; Triyono, T.; Ningrum, N. C. Performance of a Hybrid Catalyst from Amine Groups and Nickel Nanoparticles Immobilized on Lapindo Mud in Selective Production of Bio-Hydrocarbons. Indones. J. Chem. 2022, 22 (4), 896–912. https://doi.org/10.22146/ijc.70667. (34) Ibrahim, M. S.; Trisunaryanti, W.; Triyono, T. Nickel Supported Parangtritis Beach Sand (PP) Catalyst for Hydrocracking of Palm and Malapari Oil into Biofuel. Bull. Chem. React. Eng. Catal. 2022, 17 (3), 638–649. https://doi.org/10.9767/bcrec.17.3.15668.638-649. (35) Trisunaryanti, W.; Triyono, T.; Purwono, S.; Purwanti, A. S.; Sumbogo, S. D. Synthesis of Mesoporous Carbon from Merbau Sawdust as a Nickel Metal Catalyst Support for Castor Oil Hydrocracking. Bull. Chem. React. Eng. Catal. 2022, 17 (1), 216–224. https://doi.org/10.9767/bcrec.17.1.12940.216-224. (36) Fatmawati, D. A.; Trisunaryanti, W.; Chasanah, U. EFFECT OF METAL CONCENTRATION ON PHYSICOCHEMICAL PROPERTIES OF COBALT/REDUCED GRAPHENE OXIDE THROUGH ONE-POT GREENER CHEMICAL-THERMAL REDUCTION USING ULTRASONIC ACTIVATION. Rasayan J. Chem. 2022, 15 (4), 2969–2975. https://doi.org/10.31788/RJC.2022.1546923. 2020 |